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Building Blocks for Quantum Computing (QC)

OUTLINE
• How is Information Represented on a Classical Computer 
• The Quantum Mechanics and Mathematics Needed for QC

– Linear Algebra Applicable for Quantum Computing 
– Postulates of Quantum Mechanics (QM)

• Basic Concepts of Bits and Qubits
• Building Quantum Gates From Qubits That Obey the 

Physics Postulates of Quantum Mechanics
• Challenges of Quantum Computing and Summary
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Representing Information on a Computer

• Classical computer has two states   ( “off” and “on” )
• Define two states “0” and “1” (“bits”) that represent the 

state of a system on a computer in only terms of “0”s and 
“1”s

• How are these “0”s and “1”s represented in a classical 
computer 

• How are bits transformed in a classical computer when 
an operation is applied to them
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Basic Characteristic of a Classical Computer

• Uses a binary data representation 
for floating point and integer
quantities   (“0”s and “1”s)

• Hardware is designed and 
constructed on this base 2 formalism

• Binary representations reflect the 
lowest level structure for system 
and application software

• CPUs manipulate the classical bits 
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Single Component Representation
• Identify general rules for transforming the state of a 

single classical bit in every possible way. 
• NOT gate 

• RESET gate - Sets the state to 0 regardless of the input

• These two operations define all possible ways to 
transform the state of a single classical bit

Initial State Final State
0 not(0) 1
1 not(1) 0

Initial State Final State

0 reset(0) 0

1 reset(1) 0
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The Quantitative Language and 
Vocabulary of Quantum Computing

Properties of Linear Algebra Required to 
Describe Quantum Computing Operations
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Review Basic Linear Algebra 
• Vector Space 

A vector space is a collection vectors, which may be added together 
and multiplied by scalar quantities and still be a part of the collection of 
vectors 

• Linear Dependence and Linear Independence
A set of vectors is said to be linearly dependent if one of the vectors in 
the set can be defined as a linear combination of the others; if no vector 
in the set can be written in this way, then the vectors are said to be 
linearly independent.

• Basis Vectors 
a set of elements (vectors) in a vector space V is called a basis, or a set 
of basis vectors, if the vectors are linearly independent and every vector 
in the vector space is a linear combination of this set. In more general 
terms, a basis is a linearly independent spanning set. A basis is 
a linearly independent spanning set
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Properties and Definitions of a 
Vector Space

• Vector Space V containing vectors A, B, C must have the 
following properties
– Commutativity [ A+B=B+A ]
– Associativity of vector addition [ (A+B)+C=A+(B+C)  ]
– Additive identity  [0+A=A+0=A ]  for all A 
– Existence of additive inverse: For any A, there exists 

a (-A) such that  A+(-A)=0
– Scalar multiplication identity [ 1A=A ]
– Given scalars r and s

• Associativity of scalar multiplication [ r(sA)=(rs)A ]
• Distributivity of scalar sums [ (r+s)A=rA+sA ]
• Distributivity of vector sums [ r(A+B)=rA+rB ]
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Vector Space and Basis Vectors

• Many linear combinations can be constructed to 
represent the states that lie on the surface of the sphere

• Set of all vectors that can lie on the surface of the sphere 
can be considered as a vector space

• Use the concept of basis vectors to identify a set of 
linearly independent vectors in that vector space with the 
requirement that every vector in the vector space is a 
liner combination of that set 
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Dirac Notation

• Many texts use Dirac “ket” notation |a> to denote a 
column vector

and a Dirac “bra” notation to denote the Hermitian 

conjugate # of the row vector
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|a>=

𝑎𝑎1
𝑎𝑎2
:
𝑎𝑎𝑛𝑛

�⃗�𝑎
< 𝑎𝑎| = 𝑎𝑎1∗ 𝑎𝑎2∗ . . . 𝑎𝑎𝑛𝑛∗

𝑎𝑎†

𝑈𝑈†𝑈𝑈 = 𝑈𝑈−1𝑈𝑈 = 𝐼𝐼

# The transpose aT of a column vector a is a row vector
# The adjoint is the complex conjugate transpose of a column vector a 
and is sometimes called the Hermitian conjugate
# Unitary matrix U is a complex square matrix whose adjoint equals its 
inverse and the product of U adjoint and the matrix U is the identity matrix 



 



Examples of Normalized Vectors 
in Dirac Notation

|a>=     [|0> + |1>] =       [       +       ] =          

|b> = [   |0> - |1>] =          - =              

|c> =    |0> - |1> =         - =          

Comment
– Note that |b> and |c> vectors differ by a “phase” which has no analog in classical 

description of bits
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Tensor Product

• The outer product of two coordinate vectors a and b
(represented by a b) is a matrix c such that the 
coordinates satisfy cij = ai bj

• The outer product for general tensors is also called the 
tensor product

• The tensor product of (finite dimensional) vector spaces A 
and B has dimension equal to the product of the 
dimensions of the two factors  dim(A    B) dim(A) x dim(B)
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Mathematics of a Tensor Product
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• Example:  Given 2x2 matrices X and Y

• The tensor product of 

𝑦𝑦11 𝑦𝑦12
𝑦𝑦21 𝑦𝑦22

𝑦𝑦11 𝑦𝑦12
𝑦𝑦21 𝑦𝑦22

𝑦𝑦11 𝑦𝑦12
𝑦𝑦21 𝑦𝑦22

𝑦𝑦11 𝑦𝑦12
𝑦𝑦21 𝑦𝑦22

𝑥𝑥11

𝑥𝑥12 𝑥𝑥22

𝑥𝑥21
X ⊗ =Y

𝑥𝑥11 𝑥𝑥12
𝑥𝑥21 𝑥𝑥22

𝑦𝑦11 𝑦𝑦12
𝑦𝑦21 𝑦𝑦22X = Y =

X        is⊗ Y



Additional Mathematical Tools for QC
Exclusive Disjunction

• Exclusive disjunction of a    b =(a   b)      (a   b)
• Truth table for this operation is 
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⊕ ∨ ∧ ¬ ∧

Input
Outputa b

0 0 0

0 1 1

1 0 1

1 1 0



Postulates of Quantum Mechanics
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Design principles for a QC Using the 
Properties of Quantum Mechanics 

• Quantum theory is a mathematical model of the physical 
world

• The physical world at the quantum level exhibits 
behaviors that have no analog to our everyday 
experiences 

• It is the physics and mathematical properties and 
describe the behavior and measurements of quantum 
mechanical systems that forms the structure required to 
properly design QC devices, algorithms and programs
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Bad News and Good News 
When Working with QC Systems

• Bad News
– Applying the physics of quantum mechanics has no 

classical analog in our everyday experience
– As a result, our intuition and expected reasoning that is 

based on those everyday experiences fail us when 
building systems based on the physics of the quantum 
world

• Good News
– Most of the physics and mathematical complexity of QM 

involves continuous systems in space-time 
– QM of continuous systems are not needed to describe 

quantum computing systems
– A quantum computer can be described by discrete 

systems and discrete (unitary) transformations
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Postulates of Quantum Mechanics

• A quantum system can be represented mathematically
– A unit (orthonormal) vector in the system’s state space (Hilbert 

space) is a state vector that is a complete description of the 
physical system

– This complex vector is represented by a linear sum of terms      
– Written in a Dirac bra-ket notation (example        or        )

• Dirac “ket” notation |a> is denoted by a column vector

and a Dirac “bra” notation is a row vector with each term 

complex conjugated 
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< 𝜓𝜓| |𝜙𝜙 >

|a>=

𝑎𝑎1
𝑎𝑎2
:
𝑎𝑎𝑛𝑛

< 𝑎𝑎| = 𝑎𝑎1∗ 𝑎𝑎2∗ . . . 𝑎𝑎𝑛𝑛∗



 



Basis Vectors
• A set of elements in a vector space V is called a basis (or a set of 

basis vectors) if the vectors are linearly independent and 
every vector in the vector space is a linear combination of this set

• A set of basis vectors is defined {ei } i=1,…n written in “bra-ket” 
notation satisfies

• An arbitrary vector can be written as a linear superposition of basis 
states

• The coefficients are determined by the inner product
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< 𝑒𝑒𝑖𝑖|𝑒𝑒𝑗𝑗 >= 𝛿𝛿𝑖𝑖𝑗𝑗

𝑎𝑎 = �
𝑖𝑖

𝛼𝛼𝑖𝑖 𝑒𝑒𝑖𝑖

< 𝑒𝑒𝑘𝑘|𝑎𝑎 >=< 𝑒𝑒𝑘𝑘|�
𝑖𝑖

𝛼𝛼𝑖𝑖 𝑒𝑒𝑖𝑖 >= �
𝑖𝑖

𝛼𝛼𝑖𝑖 < 𝑒𝑒𝑘𝑘|𝑒𝑒𝑖𝑖 >= 𝛼𝛼𝑘𝑘

𝑎𝑎 = �
𝑖𝑖

𝑒𝑒𝑖𝑖 < 𝑒𝑒𝑖𝑖|𝑎𝑎 >



Postulates of Quantum Mechanics

Dynamics - Time Evolution of a QM System
• The evolution of a closed system that evolves over time is 

expressed mathematically by a unitary operator that 
connects the system between time t1 to time t2 and that 
only depends on the times t1 and t2

• The time evolution of the state of a closed quantum 
system is described by the Schrodinger equation
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𝑖𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑

|𝛹𝛹 >= 𝐻𝐻(t)|𝛹𝛹 >



Postulates of Quantum Mechanics
Dynamics - Time Evolution of a QM System

• Expand the Hamiltonian   [ 1-iH(t) = U(t+dt, t) ]
– Expansion (to 1st order ) is the time evolution 

Hamiltonian that describes the system 
– H(t) has dimensions of energy (expressed as a matrix)
– H(t) is self-adjoint because it satisfies U  U=1

• Some definitions 
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†

†
The transpose aT of a column vector a is a row vector
The adjoint a is the complex conjugate transpose of a column 
vector a and is sometimes called the Hermitian conjugate
Unitary matrix U is a complex square matrix whose adjoint equals 
its inverse and the product of U and the matrix U is the identity 
matrix    U   U = U-1 U = 1†

†



Measurements on a Quantum Mechanical System
• Quantum measurements are the result of operators 

acting on the state space of the system being measured
– A quantum system in a state |a> before a 

measurement will have a probability of measuring an 
expectation value “x” given by P(x)=<a|          |a>

– The state of the system after the measurement is

– The operator    satisfies the completeness relation 

(i.e. the probabilities sum to one  )              
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Postulates of Quantum Mechanics

ℚ

ℚ𝑥𝑥
†ℚ𝑥𝑥

ℚ𝑥𝑥|𝑎𝑎 >

< 𝑎𝑎|ℚ𝑥𝑥
†ℚ𝑥𝑥|𝑎𝑎 >

ℚ
�

𝑥𝑥
ℚ𝑥𝑥
† ℚ𝑥𝑥 = 𝐼𝐼

�
𝑥𝑥
𝑃𝑃(𝑥𝑥) = 𝐼𝐼



Postulates of Quantum Mechanics

Measurements on a Quantum Mechanical System
• The measurement of an observable “X” prepares an 

eigenstate of “X” and the observer discovers the value of 
the corresponding eigenvalue

• If the quantum state prior to measurement is |a> then the 
measured value an has a probability of occurrence of 

Prob(an)=||En|a>||2=<a|En|a>
• If an is the measured result then the normalized quantum 

state immediately after measurement is 
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𝐸𝐸𝑛𝑛|𝑎𝑎 >
||𝐸𝐸𝑛𝑛|𝑎𝑎 > ||



Postulates of Quantum Mechanics

Measurements on a Quantum Mechanical System
• If many identically prepared systems are measured each 

described by the state |a> then the expectation value of 
the outcomes is

• There is an additional property of quantum mechanical 
measurement constraint called the No Cloning Theorem

• The theorem states that it is impossible to create an 
identical copy of an arbitrary unknown quantum state 
and that will be discussed later in the lecture 
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< 𝑎𝑎 >≡�
𝑛𝑛

𝑎𝑎𝑛𝑛 Pr𝑜𝑜𝑜𝑜(𝑎𝑎𝑛𝑛) = �
𝑛𝑛

𝑎𝑎𝑛𝑛 < 𝑎𝑎|𝐸𝐸𝑛𝑛|𝑎𝑎 >=< 𝑎𝑎|𝐴𝐴|𝑎𝑎 >



Composite System
• Given that the Hilbert space of system A is HA and the 

Hilbert space of system B is HB, then the Hilbert space of 
the composite systems AB is the tensor product HA  HB
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Postulates of Quantum Mechanics

⊗



The Properties of Quantum Mechanics
Summary

• Quantum mechanics of a closed quantum system can be 
described in terms of 
– Linearity
– Reversibility 
– Unitarity – mathematical completeness describing 

quantum states
– Hermiticity – real eigenvalue measurements
– Dynamical evolution of a quantum mechanical system
– Composite Properties
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Basic Concepts of Classical Bits and 
Quantum Mechanical Qubits
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Classical Bits

• Classical bit will be in a state defined by the values of 
either “0” or “1”

• Properties of classical bits can be used to construct 
classical logic gates
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Classical Logic Gates
• There are several well known logic gates 
• PROBLEM: None of these gates operate under the 

quantum mechanical reversibility requirement

• The classical NOT gate is reversible but the AND, OR 
and NAND gates are not
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The Classical Gate’s Shortcomings 
for Use as a Quantum Gate

• Quantum physics puts restrictions on the types of gates 
that can be incorporated into a quantum computer

• The requirements that 
– A quantum gate must incorporate the linear 

superposition of pure states that includes a phase
– All closed quantum state transformations must be 

reversible 
• These requirements restrict the type of logic gates 

available for constructing a quantum computer
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Quantum Property of Reversibility 
and Constraints of Gate Operations

• Reversibility can be quantified mathematically through the 
matrix representation of the logic gate

• The matrix has the property of preserving the length of 
vectors, (implying that the matrices are unitary, thereby 
satisfying the Axiom 4 requirement for quantum mechanics)

• For gates represented by a matrix, the unitarity condition is 
necessary and sufficient for ensuring that pure orthonormal 
state vectors get mapped to other pure orthonormal state 
vectors within the Hilbert space

• The IDENTITY operation and NOT gates are “reversible” 
(The outcome of the gate can be undone by applying other 
gates, or effectively additional matrix operations)
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Qubits

• A quantum bit (Qubit) will have the possibility of a state 
value of either a “0” or “1” but can also be in a linear 
combination of states other than the classical value of 
either a “0” or “1”

• A qubit can be said to form a superposition state that can 
be represented by a linear combination of probability 
amplitudes associated with each component vector 
describing that state vectors in that Hilbert space 

• Qubits can be described by the mathematics of linear 
algebra and matrices 
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Representation for a Single Qubit
Bloch Sphere

• From    can re-write | > = ±|0> + ² |1>

• This representation is visualized by states that lie of the surface of a 
sphere (Bloch Sphere)
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Figure from Wikipedia 
Bloch Sphere
https://en.wikipedia.org/w
iki/Bloch_sphere

|α|2 + |β|2 = 1

�| >= 𝑒𝑒𝑖𝑖𝑖𝑖(cos
𝜃𝜃
2 |0 > +𝑒𝑒𝑖𝑖 sin

𝜃𝜃
2 |1 >𝜓𝜓

ψ

φ

https://en.wikipedia.org/wiki/Bloch_sphere


Rotation Operators
• Qubit can be altered by rotating the state vector in the 

Hilbert space
• Construct a mathematical description of rotations
• Given a general exponentiated operator A perform a 

Taylor series expansion

• The 𝜎𝜎 · 𝑛𝑛
∧

are 3 useful classes of unitary matrices 
(rotation operators) when they are exponentiated
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𝑒𝑒−𝑖𝑖𝑖𝑖·𝑛𝑛𝜙𝜙2

∧

= cos
𝜙𝜙
2

− 𝑖𝑖sin(
𝜙𝜙
2

)𝜎𝜎 · 𝑛𝑛
∧

𝑒𝑒𝐴𝐴 = �

𝑘𝑘=0

∞
1
𝑘𝑘!𝐴𝐴

𝑘𝑘



Rotation Gates

• The matrices      𝜎𝜎𝑦𝑦 and are associated with rotations 
about the x, y, and z axes

• The R gate can specify a rotation in
a specific direction by a specific angle

example

• Reversible one qubit gates can be viewed as rotations in 
this 3 dimensional representation
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�𝑅𝑅
𝑛𝑛
∧(𝜃𝜃) ≡ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛·𝑖𝑖2

∧

= cos(
𝜃𝜃
2

)𝐼𝐼 − 𝑖𝑖sin(
𝜃𝜃
2

)(𝑛𝑛𝑥𝑥𝑋𝑋 + 𝑛𝑛𝑦𝑦𝑌𝑌 + 𝑛𝑛𝑧𝑧𝑍𝑍

Ry(   /4)𝜋𝜋

𝜎𝜎𝑥𝑥 ,  𝜎𝜎𝑧𝑧



Quantum Mechanical Implications 
for Gates in Terms of Rotations

• Comments
– These rotation gates often get associated with spins 

and/or ions interacting with radio frequency pulses or 
lasers (quantum computing devices) 

– For physics and chemistry problems implemented on 
a QC these sigma matrices (Pauli Spin Matrices) 
represent particles that carry a property known as 
“spin”
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Mathematical Construction 
of 1 Qubit Quantum Gates
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𝑋𝑋 = |0 >< 1| + |1 >< 0| = 0
1 1 0 + 1

0 0 1 = 0 1
1 0

𝐼𝐼 = |0 >< 0| + |1 >< 1| = 1
0 1 0 + 0

1 0 1 = 1 0
0 1

𝑌𝑌 = 𝑖𝑖𝑋𝑋𝑍𝑍 = 𝑖𝑖 0 1
1 0

1 0
0 −1 = 𝑖𝑖 0 −1

1 0 = 0 −𝑖𝑖
𝑖𝑖 0

• The matrix representation of a quantum gate

• 2x2 matrix representation of some 1-bit quantum gates

𝐻𝐻 =
1
2

|0 > +|1 > < 0| + |0 > −|1 > < 1| =
1
2

1 1
1 −1

�
𝑖𝑖

|𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 >< 𝑜𝑜𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖|

• There are many other 1 qubit gates each having a 2x2 matrix 
representation that transform an orthonormal state vector in a Hilbert 
space to another orthonormal state vector in that Hilbert space



Symbols for Single Qubit Gates
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Pauli X      X

Pauli Y      Y

Phase        S    

Pauli Z       Z

T𝜋𝜋
8

0 1
1 0

0 −𝑖𝑖
𝑖𝑖 0

1 0
0 −1

1 0
0 𝑖𝑖

1 0
0 𝑒𝑒𝑖𝑖

𝜋𝜋
4

Hadamard H
1
2

1 1
1 −1

=

=

=

𝜎𝜎𝑥𝑥

𝜎𝜎𝑦𝑦

𝜎𝜎𝑧𝑧

Pauli Spin Matrices



Ancilla Qubit
• During a computation it may be useful to control the state of a 

bit of information
• Classical computation allows such a process to occur without 

disturbing the entire computation
• In quantum computation there is no way to deterministically 

put qubits in a specific prescribed state during the computation 
without collapsing the wavefunction unless one is given 
access to qubits whose original state is known in advance

• In a quantum computer states that are known in advance are 
ancilla qubits

• In quantum computing ancilla qubits are used to store 
entangled states that enable tasks that would not normally be 
possible and for quantum error correction
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Multiple Qubits

05-Sept-2018  
10-Sept 2018

Building Blocks for Quantum Computing 
Patrick Dreher

43



Multi-bit Representation of States

• One cannot do much with one-bit classical gates
• Two states are represented by a pair of orthonormal 2

vectors  |a> =       , |b> = 
• The four states are four orthogonal vectors in four 

dimensions formed by the tensor products
|a>   |a>, |a>   |b>, |b>   |a>, |b>   |b>

• Two states can also be represented by
|aa>, |ab>, |ba>, |bb>

• With this construct, can now examine two state gates
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Reversible 2 Qubit Gate
• A two qubit quantum logic gate has a control qubit and a 

target qubit
• The gate is designed such that if 

– the control bit is set to 0 the target bit is unchanged
– The control bit is set to 1 the target qubit is flipped

• Can be expressed as |a, b>       |a, b     a>
• This type of gate is called a CNOT gate
• The CNOT gate is generally used in quantum computing 

to generate entangled states
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⊕

Input Output

|00> |00>

|01> |01>

|10> |11>

|11> |10>



Controlled-NOT Gate
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Matrix representation of the CNOT gate

𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|b>

|a> |a>

|b    a>⊕

†
CNOT CNOTU U I=

|aa>  |aa> |ba>  |bb>
|ab>  |ab> |bb>  |ba>



Differences in Basic Computer Logic Structure 
Between Conventional and a Quantum Computer

• Classical computer uses standard logic gates (NAND, etc.)
• Quantum computer

– Differs from a conventional computer because the design must 
enforce the postulates of quantum mechanics

– Qubits obey the postulates of quantum mechanics - properties of 
reversibility and unitarity

– Manipulation of the qubits also accomplished through gates 

𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
†
CNOT CNOTU U I=

|aa>  |aa> |ba>  |bb>
|ab>  |ab> |bb>  |ba>

|a>                          |a>

|b>                            |b ⊕ a >
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Controlled U Gate

• Extension of the controlled CNOT gate
• Given any unitary matrix U can construct a universal gate 

with the properties
– Single control qubit
– N target qubits

• Outputs
– If the control bit is set to “0” the target bits are 

unchanged
– If the control bit is set to “1” then the gate U is applied 

to the target bits

05-Sept-2018  
10-Sept 2018

Building Blocks for Quantum Computing 
Patrick Dreher

48

|a> |a>

U



Other Controlled Gates
• Controlled U gate is a gate that operates on two qubits in 

such a way that the first qubit serves as a control. It 
maps the basis states as follows

|00>  |00>
|01>  |01>
|10>  |1>    U|0> =|1>    (u00|0>+u10|1>)
|11>  |1>     U|1> =|1>    (u01|0>+u11|1>)

• U represents one of the Pauli matrices 
• Controlled-X, Controlled-Y, Controlled-Z gates
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⊗ ⊗

⊗ ⊗

𝐶𝐶 𝑈𝑈 =

1 0 0 0
0 1 0 0
0 0 𝑖𝑖00 𝑖𝑖01
0 0 𝑖𝑖10 𝑖𝑖11

𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜎𝜎𝑧𝑧



A Reversible Universal Logic Gate

• A controlled SWAP can be defined as 
F=|0><0|     + |1><1|    S
where S is the usual swap operation
S=|00><00| + |01><01| = |10><10| + |11><11|

• The number of 1s is conserved between the input and 
output (conservative reversible logic gate)

• This reversible universal logic gate and can be 
constructed as a 3-bit gate that performs a controlled 
swap
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⊗ ⊗ ⊗



Matrix Representation of the SWAP Gate
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𝑈𝑈𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Truth Table for the SWAP Gate

Input Output

|00> |00>

|01> |10>

|10> |01>

|11> |11>

SWAP Gate circuit representation

X

X



Postulates of Quantum Mechanics and 
Universal Reversible Gates

• A Toffoli gate constructs the AND logic state when c = 0
• A Toffoli gate constructs the NAND when c = 1
• Every Boolean function has a reversible implementation 

using Toffoli gates
• There is no universal reversible gate with fewer than 

three inputs 
•

05-Sept-2018  
10-Sept 2018

Building Blocks for Quantum Computing 
Patrick Dreher

52



Construct Reversible 
AND and NAND Gates

• The Toffoli gate is a 3-bit gate, which is universal for 
classical computation

• If the first two bits are in the state |1>, it applies a Pauli-X 
(NOT) on the third bit, otherwise the state is left unchanged
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|c>

|b> |b>

|c     ab>⊕

|a> |a>



Properties of Toffoli Gates

• Toffoli Gate is a reversible gate (i.e. UT
-1UT=I) or 

• Toffoli gate is used to replace a classical circuit with the 
equivalent reversible gate

• Two bits are control bits (|a> and |b>) and target bit |c> is 
flipped as per the truth table

(a, b, c)  (a, b, c    ab)  (a, b, c)
• Toffoli gate and be used to simulate a NAND Gate
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⊕

|1>

|b> |b>

|1     ab> =     |ab>⊕

|a> |a>

¬

¬



Toffoli Gate Truth Table and Matrix

INPUT OUTPUT

a b c a’ b’ c’

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 0 1

1 0 0 1 0 0

1 0 1 0 1 1

1 1 0 1 1 1

1 1 1 1 1 0
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

X Gate
Pauli       rotation matrix𝜎𝜎𝑥𝑥



Fredkin Gate (CSWAP) Properties

• Property that the |c> is the control bit and is not changed 
by the Fredkin gate

• If |c>=0 then |a> and |b>
are unchanged

• If |c>=1 then |a> and |b>
are swapped

• The original Fredkin Gate 
settings can be recovered by applying the Fredkin
gate twice
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|a>

X

X

|b>

|c>

|a’>

|b’>

|c’>



Fredkin Gate Truth Table and Matrix

INPUT OUTPUT

a b c a’ b’ c’

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 0 1

1 0 0 1 0 0

1 0 1 0 1 0

1 1 0 1 1 1

1 1 1 1 1 1

05-Sept-2018  
10-Sept 2018

Building Blocks for Quantum Computing 
Patrick Dreher

57

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

X Gate
Pauli       rotation matrix𝜎𝜎𝑥𝑥



Fredkin Gates Mapping 
Classically Irreversible Gates
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AND Gate Crossover Gate NOT Gate
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Summary – Quantum Gates Must Adhere 
to Postulate of Quantum Mechanics 

• Any quantum gate that is used to construct quantum 
computing operations must have a truth table that 
preserves the following
– The gates must operate in a complex vector space
– Complex vector space linear transformations that 

preserve orthogonality are unitary transformations
– The dynamics that takes states from t1 to t2 are 

restricted to transformations that preserve this 
orthogonality and are therefore represented by unitary 
matrices
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Quantum Mechanics Constraints for 
Quantum Computing Algorithms and Codes
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Quantum Information No Cloning Theorem

• A CNOT gate can copy a classical bit in some unknown 
state “x” and an additional bit initialized to zero and 
provide an output where both bits are in a state “x”
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Measurements with a Quantum Computer
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Modifications Needed to Map From 
Classical to Quantum Computing 

Measurements 
• Measurements in a classical computer are not a factor in 

the overall computational process
• This is not true for quantum computing
• From axiom 4 of quantum mechanics 

a state evolves over time and is expressed mathematically by a unitary 
operator (transformation) for a closed quantum mechanics system

• This requires that a quantum gate must be reversible 
under unitary time evolution
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Measurements from Algorithms and 
Codes Running on a Quantum Computer

• Cannot output results in a similar manner to methods 
using on a classical computer

• Start with two quantum systems 1 and 2 that can interact 
with each other

• The act of measurement entangles the two systems 
quantum mechanically

• Entanglement destroys the superposition of states of 
system 1 so that some of the relative phases of the 
system 1 superposition are no longer present

• Result is a collapse of the states of system 1 that cannot 
be re-constructed
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Coding the QM Property of 
Reversibility into Quantum Gates 

• Quantum gates can be represented in matrix formulations
• Quantum gate interactions mathematically described by 

matrix multiplications that have the property of preserving the 
length of vectors. 

• Such matrices are called “unitary” and are characterized by 
the equation A†A = l

• For gates represented by a matrix, the unitarity condition is 
necessary and sufficient for ensuring that pure states get 
mapped to pure states

• Because qubit states can be represented as points on a 
sphere, reversible one-qubit gates can be thought of as 
rotations of the Bloch sphere. This is why such quantum gates 
are often called “rotations”

• Quantum circuits are constructed from the combined actions 
of unitary transformations and single bit rotations
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Comparison of Classical and Quantum 
Aspects of Computation *
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* arXiv:quant-ph/0207118v1 19 Jul 2002



Challenges of Quantum Computing
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Difficulties in Developing Algorithms 
for Quantum Computers 

• Problem 1
– If one wants to use quantum mechanics to build a computer, 

one must understand workings of the quantum world to 
know how a quantum computer will process a problem

– However
• All human experiences rooted in the classical world
• Human experience and intuition will tend to think of ideas and approaches 

that are biased toward past experiences and expected behaviors
• Quantum computers behave in ways that have no classical analog
• There is no prior direct human experience on which to rely for intuition 

• Problem 2
– Even if an algorithm or program can be shown to be based 

on quantum mechanical systems it must be demonstrated 
that the quantum mechanical algorithm is better than the 
classical equivalent

05-Sept-2018  
10-Sept 2018

Building Blocks for Quantum Computing 
Patrick Dreher

69



Summary

• The mathematics and quantum mechanics used to 
construct quantum computing building blocks can be 
customized and applied to specific specific quantum 
computer designs and constructions

• The details of how to implement a rotation gates and 
unitary transformations are specific to each quantum 
computer architecture

• Future lectures will elaborate on the details of how 
– Gates are constructed on specific quantum computing 

devices
– Quantum computing state vectors are manipulated on 

individual quantum computer architectures
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